Running Test on Jupyter

for detail of my hardware please visit this blog post here.


Testing Heart tracking

this jupyter notebook is running on pc. It connect to beaglebone with usb.

Here we use rest api to communicate with application running on the beaglebone

import requests
import time

By access home directory, it act as help document and describe function of the app

resp = requests.get('http://192.168.7.2:8001/')
resp.json()
{'cmd': {'myWatch/<cmd>': {'stop': 'stop the watch',
   'start': 'start watch and save heart rate log'},
  'hrs': 'get all heart rate log',
  'myWatch': 'check watch timer',
  'hr': 'get current heart rate'},
 'App name': 'BBB Heart Track'}

example on running the command

resp = requests.get('http://192.168.7.2:8001/hrs')
print(resp.json())
resp = requests.get('http://192.168.7.2:8001/myWatch')
print(resp.json())
resp = requests.get('http://192.168.7.2:8001/hr')
print(resp.json())
[]
{'counter': 0}
{'curBPM': 61}

running the command for one minute

resp = requests.get('http://192.168.7.2:8001/myWatch/start')
print(resp.json())
for i in range(0,60):
    resp = requests.get('http://192.168.7.2:8001/myWatch')
    print(resp.json())
    resp = requests.get('http://192.168.7.2:8001/hr')
    print(resp.json())
    time.sleep(1)
resp = requests.get('http://192.168.7.2:8001/myWatch/stop')
print(resp.json())
{'message': 'myWatch start running'}
{'counter': 0}
{'curBPM': 71}
{'counter': 1}
{'curBPM': 70}
{'counter': 2}
{'curBPM': 70}
{'counter': 3}
{'curBPM': 70}
{'counter': 5}
{'curBPM': 70}
{'counter': 6}
{'curBPM': 69}
{'counter': 7}
{'curBPM': 69}
{'counter': 8}
{'curBPM': 69}
{'counter': 9}
{'curBPM': 70}
{'counter': 10}
{'curBPM': 71}
{'counter': 11}
{'curBPM': 72}
{'counter': 12}
{'curBPM': 73}
{'counter': 14}
{'curBPM': 74}
{'counter': 15}
{'curBPM': 74}
{'counter': 16}
{'curBPM': 74}
{'counter': 17}
{'curBPM': 75}
{'counter': 18}
{'curBPM': 75}
{'counter': 19}
{'curBPM': 74}
{'counter': 20}
{'curBPM': 74}
{'counter': 22}
{'curBPM': 74}
{'counter': 23}
{'curBPM': 73}
{'counter': 24}
{'curBPM': 73}
{'counter': 25}
{'curBPM': 73}
{'counter': 26}
{'curBPM': 73}
{'counter': 27}
{'curBPM': 73}
{'counter': 28}
{'curBPM': 73}
{'counter': 30}
{'curBPM': 73}
{'counter': 31}
{'curBPM': 73}
{'counter': 32}
{'curBPM': 73}
{'counter': 33}
{'curBPM': 73}
{'counter': 34}
{'curBPM': 69}
{'counter': 35}
{'curBPM': 66}
{'counter': 36}
{'curBPM': 64}
{'counter': 37}
{'curBPM': 61}
{'counter': 39}
{'curBPM': 59}
{'counter': 40}
{'curBPM': 57}
{'counter': 41}
{'curBPM': 55}
{'counter': 42}
{'curBPM': 53}
{'counter': 43}
{'curBPM': 51}
{'counter': 44}
{'curBPM': 65}
{'counter': 46}
{'curBPM': 76}
{'counter': 47}
{'curBPM': 84}
{'counter': 48}
{'curBPM': 90}
{'counter': 49}
{'curBPM': 94}
{'counter': 50}
{'curBPM': 98}
{'counter': 51}
{'curBPM': 101}
{'counter': 52}
{'curBPM': 102}
{'counter': 53}
{'curBPM': 104}
{'counter': 55}
{'curBPM': 105}
{'counter': 56}
{'curBPM': 106}
{'counter': 57}
{'curBPM': 106}
{'counter': 58}
{'curBPM': 107}
{'counter': 59}
{'curBPM': 93}
{'counter': 60}
{'curBPM': 83}
{'counter': 61}
{'curBPM': 76}
{'counter': 63}
{'curBPM': 70}
{'counter': 64}
{'curBPM': 66}
{'counter': 65}
{'curBPM': 61}
{'counter': 66}
{'curBPM': 60}
{'counter': 67}
{'curBPM': 59}
{'message': 'myWatch is stopping'}

read data from database

resp = requests.get('http://192.168.7.2:8001/hrs')
array = resp.json()
for item in array:
    print(item)
{'id': 1, 'dataset': 0, 'curTime': '2019-10-03 19:08:55.847785', 'cur_bpm': 71}
{'id': 2, 'dataset': 0, 'curTime': '2019-10-03 19:08:56.750101', 'cur_bpm': 70}
{'id': 3, 'dataset': 0, 'curTime': '2019-10-03 19:08:57.756113', 'cur_bpm': 70}
{'id': 4, 'dataset': 0, 'curTime': '2019-10-03 19:08:58.750743', 'cur_bpm': 70}
{'id': 5, 'dataset': 0, 'curTime': '2019-10-03 19:08:59.768510', 'cur_bpm': 70}
{'id': 6, 'dataset': 0, 'curTime': '2019-10-03 19:09:00.753312', 'cur_bpm': 69}
{'id': 7, 'dataset': 0, 'curTime': '2019-10-03 19:09:01.750796', 'cur_bpm': 69}
{'id': 8, 'dataset': 0, 'curTime': '2019-10-03 19:09:02.757159', 'cur_bpm': 69}
{'id': 9, 'dataset': 0, 'curTime': '2019-10-03 19:09:03.751156', 'cur_bpm': 70}
{'id': 10, 'dataset': 0, 'curTime': '2019-10-03 19:09:04.762460', 'cur_bpm': 70}
{'id': 11, 'dataset': 0, 'curTime': '2019-10-03 19:09:05.754701', 'cur_bpm': 71}
{'id': 12, 'dataset': 0, 'curTime': '2019-10-03 19:09:06.745746', 'cur_bpm': 72}
{'id': 13, 'dataset': 0, 'curTime': '2019-10-03 19:09:07.759501', 'cur_bpm': 73}
{'id': 14, 'dataset': 0, 'curTime': '2019-10-03 19:09:08.745790', 'cur_bpm': 74}
{'id': 15, 'dataset': 0, 'curTime': '2019-10-03 19:09:09.743619', 'cur_bpm': 74}
{'id': 16, 'dataset': 0, 'curTime': '2019-10-03 19:09:10.745818', 'cur_bpm': 74}
{'id': 17, 'dataset': 0, 'curTime': '2019-10-03 19:09:11.743780', 'cur_bpm': 75}
{'id': 18, 'dataset': 0, 'curTime': '2019-10-03 19:09:12.745785', 'cur_bpm': 75}
{'id': 19, 'dataset': 0, 'curTime': '2019-10-03 19:09:13.743580', 'cur_bpm': 74}
{'id': 20, 'dataset': 0, 'curTime': '2019-10-03 19:09:14.745725', 'cur_bpm': 74}
{'id': 21, 'dataset': 0, 'curTime': '2019-10-03 19:09:15.743768', 'cur_bpm': 74}
{'id': 22, 'dataset': 0, 'curTime': '2019-10-03 19:09:16.753122', 'cur_bpm': 74}
{'id': 23, 'dataset': 0, 'curTime': '2019-10-03 19:09:17.744086', 'cur_bpm': 74}
{'id': 24, 'dataset': 0, 'curTime': '2019-10-03 19:09:18.745149', 'cur_bpm': 73}
{'id': 25, 'dataset': 0, 'curTime': '2019-10-03 19:09:19.744076', 'cur_bpm': 73}
{'id': 26, 'dataset': 0, 'curTime': '2019-10-03 19:09:20.745219', 'cur_bpm': 73}
{'id': 27, 'dataset': 0, 'curTime': '2019-10-03 19:09:21.744313', 'cur_bpm': 73}
{'id': 28, 'dataset': 0, 'curTime': '2019-10-03 19:09:22.745218', 'cur_bpm': 73}
{'id': 29, 'dataset': 0, 'curTime': '2019-10-03 19:09:23.744121', 'cur_bpm': 73}
{'id': 30, 'dataset': 0, 'curTime': '2019-10-03 19:09:24.745103', 'cur_bpm': 73}
{'id': 31, 'dataset': 0, 'curTime': '2019-10-03 19:09:25.744211', 'cur_bpm': 73}
{'id': 32, 'dataset': 0, 'curTime': '2019-10-03 19:09:26.744969', 'cur_bpm': 73}
{'id': 33, 'dataset': 0, 'curTime': '2019-10-03 19:09:27.744395', 'cur_bpm': 73}
{'id': 34, 'dataset': 0, 'curTime': '2019-10-03 19:09:28.744932', 'cur_bpm': 69}
{'id': 35, 'dataset': 0, 'curTime': '2019-10-03 19:09:29.744222', 'cur_bpm': 69}
{'id': 36, 'dataset': 0, 'curTime': '2019-10-03 19:09:30.756226', 'cur_bpm': 66}
{'id': 37, 'dataset': 0, 'curTime': '2019-10-03 19:09:31.744590', 'cur_bpm': 64}
{'id': 38, 'dataset': 0, 'curTime': '2019-10-03 19:09:32.745046', 'cur_bpm': 61}
{'id': 39, 'dataset': 0, 'curTime': '2019-10-03 19:09:33.744660', 'cur_bpm': 59}
{'id': 40, 'dataset': 0, 'curTime': '2019-10-03 19:09:34.744849', 'cur_bpm': 57}
{'id': 41, 'dataset': 0, 'curTime': '2019-10-03 19:09:35.744433', 'cur_bpm': 55}
{'id': 42, 'dataset': 0, 'curTime': '2019-10-03 19:09:36.744799', 'cur_bpm': 53}
{'id': 43, 'dataset': 0, 'curTime': '2019-10-03 19:09:37.744586', 'cur_bpm': 52}
{'id': 44, 'dataset': 0, 'curTime': '2019-10-03 19:09:38.744895', 'cur_bpm': 51}
{'id': 45, 'dataset': 0, 'curTime': '2019-10-03 19:09:39.744847', 'cur_bpm': 65}
{'id': 46, 'dataset': 0, 'curTime': '2019-10-03 19:09:40.744728', 'cur_bpm': 76}
{'id': 47, 'dataset': 0, 'curTime': '2019-10-03 19:09:41.744912', 'cur_bpm': 84}
{'id': 48, 'dataset': 0, 'curTime': '2019-10-03 19:09:42.755911', 'cur_bpm': 84}
{'id': 49, 'dataset': 0, 'curTime': '2019-10-03 19:09:43.744675', 'cur_bpm': 90}
{'id': 50, 'dataset': 0, 'curTime': '2019-10-03 19:09:44.745084', 'cur_bpm': 94}
{'id': 51, 'dataset': 0, 'curTime': '2019-10-03 19:09:45.741952', 'cur_bpm': 98}
{'id': 52, 'dataset': 0, 'curTime': '2019-10-03 19:09:46.743486', 'cur_bpm': 101}
{'id': 53, 'dataset': 0, 'curTime': '2019-10-03 19:09:47.742130', 'cur_bpm': 102}
{'id': 54, 'dataset': 0, 'curTime': '2019-10-03 19:09:48.755069', 'cur_bpm': 104}
{'id': 55, 'dataset': 0, 'curTime': '2019-10-03 19:09:49.746341', 'cur_bpm': 105}
{'id': 56, 'dataset': 0, 'curTime': '2019-10-03 19:09:50.743254', 'cur_bpm': 106}
{'id': 57, 'dataset': 0, 'curTime': '2019-10-03 19:09:51.746529', 'cur_bpm': 106}
{'id': 58, 'dataset': 0, 'curTime': '2019-10-03 19:09:52.743030', 'cur_bpm': 107}
{'id': 59, 'dataset': 0, 'curTime': '2019-10-03 19:09:53.746239', 'cur_bpm': 93}
{'id': 60, 'dataset': 0, 'curTime': '2019-10-03 19:09:54.743212', 'cur_bpm': 83}
{'id': 61, 'dataset': 0, 'curTime': '2019-10-03 19:09:55.746440', 'cur_bpm': 83}
{'id': 62, 'dataset': 0, 'curTime': '2019-10-03 19:09:56.767403', 'cur_bpm': 76}
{'id': 63, 'dataset': 0, 'curTime': '2019-10-03 19:09:57.742539', 'cur_bpm': 70}
{'id': 64, 'dataset': 0, 'curTime': '2019-10-03 19:09:58.743078', 'cur_bpm': 66}
{'id': 65, 'dataset': 0, 'curTime': '2019-10-03 19:09:59.746358', 'cur_bpm': 64}
{'id': 66, 'dataset': 0, 'curTime': '2019-10-03 19:10:00.743390', 'cur_bpm': 61}
{'id': 67, 'dataset': 0, 'curTime': '2019-10-03 19:10:01.742683', 'cur_bpm': 60}
{'id': 68, 'dataset': 0, 'curTime': '2019-10-03 19:10:02.743112', 'cur_bpm': 59}
view raw first_test.md hosted with ❤ by GitHub

Deemarc Burakitbumrung

A software develper who graduated from Electronic and Communication Engineer. Have an interest in the field of programming and embedded system.

    1 comment:

    1. Lucky Eagle Casino and Resort: Mountain Dew and other - KTM
      KTM and other 제천 출장샵 operators and gambling enthusiasts 양산 출장안마 will soon 남양주 출장마사지 be able to utilize 군산 출장샵 their own patented technology 안양 출장안마 to operate a casino at the

      ReplyDelete